

Functional analysis of an Attitude and Orbit Control System for CubeSats with propulsion for deep-space missions

Gary Quinsac, PhD student at PSL

Supervisor: Benoît Mosser

Co-supervisor: Boris Segret

09/06/2016

Outline

- Mission contexts
- Birdy technology
- External constraints Torques
- Sensors and actuators
- CubeSat propulsion systems
 - Basics and classification
 - Performances
- L-µPPT system
- AOCS modes and block diagram

1st context: deep-space cruise

Earth at launch

Earth at the end of the mission

(5)

(2)

CubeSat

Earth-Mars-Earth free return trajectory Reference orbit computation Deployment after IOI

- Earth-to-Mars science and navigation (~1 m/s)
- 3 Mars fly-by: first datalink

5 End of mission: final datalink

 Marth-to-Earth science and navigation (~1 m/s)

(4)

2nd context: "flying-legs"

Radio science

- Propagators with model in the loop (0)
- Released in situ by mothercraft (1)
- 2 Navigation mode TCM: set new $\Delta V \sim 1$ 5 TT&C to Mothercraft m/s (1 day)
- 3 Science mode (1 day ~80 km)
- Navigation mode orbit determination (4)

AOCS functional integration in Birdy technology

Still to be adressed

 $^{\odot}$ L-µPPT project, L-µPPT

External constraints: torques

T_{max} [N.m]

~10-8

~10-8

Mars surfaces = 1000 km

* The ground segment computes it in advance

~10-9

~10-15

Sensors and actuators

Sensors	Accuracy	Comments
Magnetometers	~ 1 deg	unusable
Earth sensors	~ 1 deg	unusable
Sun sensors	~ 1 deg	Safe mode and rough acquisition
Star tracker	~ 1" – 50"	Fine acquisition and navigation
3-axis accelerometers	Drift: 0,001 – 1 deg/h	Rough and fine acquisitions

© VACCO, JPL MarCO Micro CubeSat Propulsion System

© SolarmemsTechnologies, Nano-SSOC-A60 analog sun sensor

 $\ensuremath{\mathbb{C}}$ Maryland Aerospace Inc., MAI-SS Space Sextant

Actuators	Accuracy	Comments
Magnetic torquers	~ 1 deg	unusable
Reaction wheels	< 0,1 deg	Saturation => Momentum dumping
Propulsion	Depends a lot on the propulsion	Attitude and Orbit, Propellant limited

Propulsion systems' basics

Main features:

- Velocity increment capability (ΔV), (<=> control budget)
- Thrust levels (F), related to the maneuver time and precision
- Storability

Basic equation for force of thrust [N]

 $F = \dot{m} \cdot v_e$

Total Impulse [N.s]

$$I_{tot} = \int_{0}^{\tau} F \cdot dt = v_e \cdot \int_{0}^{m_p} dm = v_e \cdot m_P$$

 Specific Impulse and System Specific Impulse [s]

$$I_{sp} = \frac{F}{(\dot{m} \cdot g_0)} = \frac{I_{tot}}{(m_P \cdot g_0)} \qquad I_{ssp} = \frac{I_{tot}}{(m_{PS} \cdot g_0)}$$

Total velocity increment [m.s-1]

$$\Delta v = -I_{SP} \cdot g_0 \cdot \ln\left(\frac{m_f}{m_{SC}}\right)$$

CubeSat propulsion systems

- Cold gas: simple and reliable, good thrust to power ratio, very low I_{sp}
- Hot gas: quite simple and reliable, good thrust to power ratio, average l_{sp}
 - **Electric**: more complicated, low thrust to power ratio, high I_{sp}
- **Propellant free**: very early stages

CubeSat propulsion systems comparison

PPTCUP, Ciaralli et al. (2015)

BGT-X5, Busek, Tsay, Frongillo, Lafko,& Zwahlen (2014)

MEPSI, VACCO, Stevenson, T. et al. (2015)

© L-µPPT project (2015)

µCAT, The George Washington University, Keidar et al. (2015)

MAX-1, Accion systems Inc. (2015)

L-µPPT Vs. classic PPTs

Robert G. Jahn, Edgar Y. Choueiri (2002)

L-µPPT:

- Propellant mass not limited by geometry
- Steady propellant feed geometry
- Propellant balancing capability in multi-thrusters configuration

PPT:

- Propellant fed by a spring
- Propellant ablation through a high voltage discharge
- Ablated propellant accelerated by a self-generated magnetic field

L-μΡΡΤ

- TRL 3
- 4-thruster configuration ($T_{L-\mu PPT} > 10^{-7}$ N.m)
- Space qualified liquid propellant
- Schmitt triggers
 - Dead-band constant
 - Trade-off between accuracy and consumption
- Detumbling in 9 hours with initial 50°/s spin on each axis
- Attitude control induces linear ΔV

© L-µPPT project, L-µPPT

Modes

Mission modes	Description	
Orbit insertion	Provided by host mission:on transfer orbitin-situ	
Acquisition (detumbling)	Initial angular velocities up to 50°/s	
Navigation	 ΔV of ~ few m/s for cruise, ~ 50 m/s for flying legs Pointing accuracy of several arcsec 	
Science	Depends on the science case: pointing / spinning	
TT&C	Low accuracy pointing (>10°) at other satellites	
Safe mode	Low accuracy pointing at the Sun	

AOCS Modes	Description	Sensors and actuator
Orbit insertion		Turned off
Spin reduction mode	Especially for detumbling	GyroscopesL-µPPT
Rough acquisition mode	Low attitude requirement-modes,	 Sun sensors and gyroscopes L-µPPT
Fine acquisition mode	Especially for navigation	 Star tracker and gyroscopes L-µPPT
TCM mode	ΔV computation and orbit correction (navigation)	• L-µPPT
Slew mode / Spin mode	Pointing change or continuous spin	 Gyroscopes and Sun sensors or star tracker L-µPPT
Safe mode		Sun sensorsL-µPPT

Conclusion

- Development of an AOCS for autonomous navigation in interplanetary missions at the Observatory of Paris and NCKU
- L-µPPT system is expected to be the only actuator:
 - Fine attitude control (50 μ N of thrust with 4 thrusters)
 - Trajectory correction maneuvers and in-situ operation (120 m/s to 190 m/s of ΔV)
 - Already 2 identified challenges: Schmitt trigger and induced linear ΔV
- Functional analysis approach general enough to fit to several types of interplanetary missions
- Objective: "off the shelf" high-level functions
- Considerations such as radiation protection and plume contamination have to be addressed

Supervisor: Benoît Mosser