THE PICSAT PROJECT

Mathias Nowak,
PhD student LESIA/Observatoire de Paris
mathias.nowak@obspm.fr

THE PICSAT PROJECT

- A 3-unit CubeSat, ~4 kg, ~6 W
- Dedidacted to the observation of Beta Pictoris
- LESIA (Paris Observatory) is responsible for the payload and AIT
- To be launched in Q2 2017

BETA PICTORIS

Image: ESO Digitized Sky Survey, DSS2-red, 2° x 2° field

BETA PICTORIS

mag = 3.86 (V band)

Spectral type: A6V (main sequence white star)

A very young star: 10 to 20 Myr

Image: ESO Digitized Sky Survey, DSS2-red, 2° x 2° field

BETA PICTORIS

```
mag = 3.86 (V band)
Spectral type: A6V (main sequence white star)
A very young star: 10 to 20 Myr
```

```
Coordinates:
RA 05h 47min 17s
Dec -51° 03′ 59′′

(visible only from the Southern hemisphere; hidden by the Sun during summer)
```

Image: ESO Digitized Sky Survey, DSS2-red, 2° x 2° field

- Circumstellar disk discovered in 1984
- Later identified as a ''debris disk'' (second stage in the evolutionary track)
- Secondary disk identified with the Hubble Telescope

Presence of a planet (Beta Pic b), discovered in 2009

Presence of a planet (Beta Pic b), discovered in 2009

CO emission line ''deprojected'' assuming circular motion (Dent at al. 2014)

Presence of a planet (Beta Pic b), discovered in 2009

Gas + dust + debris +
planetesimals + a formed planet:
The PERFECT target to test planet
formation models!

CO emission line ''deprojected'' assuming circular motion (Dent at al. 2014)

Because of this (Lecavelier et al. 1995):

Because of this (Lecavelier et al. 1995): a transitting object seen in 1981

Because of this (Lecavelier et al. 1995): a transitting object seen in 1981

Recent observations strongly suggest that Beta Pic b is the transitting body

Next transit: between June 2017 and September 2018

Main objective of PICSAT: constant monitoring of the photometry of Beta Pic, at ~100 ppm/hour accuracy to detect the transit

- -> Determine the radius of the planet
- -> Characterize the Hill Sphere
- -> Inohomogeneities in the disk

Main objective of PICSAT: constant monitoring of the photometry of Beta Pic, at ~100 ppm/hour accuracy to detect the transit

- -> Determine the radius of the planet
- -> Characterize the Hill Sphere
- -> Inohomogeneities in the disk

Why not use existing facilities?

- The transit is expected between June 2017 and September 2018
- It is a 10 h event
- 1 Beta Pic CANNOT be observed from ground in summer
- 2 Unrealistic to request one year of 24/7 observing time on a few-meter ground or space telescope in the hope of detecting a 10 hr event!
- → A dedicated space mission is required... but the timeframe is very short!

(also contains the Star Tracker)

PICSAT IN A NUTSHELL:

Overview

PICSAT IN A NUTSHELL: The Payload

Off-axis parabola (30 deg)

Real diameter: 50 mm

Effective diameter: 35 mm

Focal length: 135 mm (f/D=2.70)

Avalanche photodiode (photon counting detector) IDQUANTIQUE ID101

PICSAT IN A NUTSHELL: ADCS and fine pointing

- Light is collected by a single-mode fiber (3 micron diameter in the focal plane)
- Required injection stability: 5% @ 100 Hz
- Fine positionning of the fiber (0.5 micron required!)
- → 1 arcsec pointing precision required!

PICSAT IN A NUTSHELL: ADCS and fine pointing

- Light is collected by a single-mode fiber (3 micron diameter in the focal plane)
- Required injection stability: 5% @ 100 Hz
- Fine positionning of the fiber (0.5 micron required!)
- → 1 arcsec pointing precision required!

First stage: ADCS ''coarse pointing''

iADCS 100.60:

(Hyperion Technologies)

- 3 reaction wheels
- Gyroscopes
- 3 magneto-torquers
- Magnetometer
- StarTracker
- → 30 arcsec accuracy (datasheet)

PICSAT IN A NUTSHELL: ADCS and fine pointing

- Light is collected by a single-mode fiber (3 micron diameter in the focal plane)
- Required injection stability: 5% @ 100 Hz
- Fine positionning of the fiber (0.5 micron required!)
- → 1 arcsec pointing precision required!

First stage: ADCS ''coarse pointing''

iADCS 100.60:

(Hyperion Technologies)

- 3 reaction wheels
- Gyroscopes
- 3 magneto-torquers
- Magnetometer
- StarTracker
- → 30 arcsec accuracy (datasheet)

Second stage: Payload fine pointing

- Photometric measurements (1000 Hz)
- 3-axis gyroscope
- Data fusion is made through an Extended Kalman Filter

Accuracy: < 1 arcsec
(simulations)</pre>

PICSAT IN A NUTSHELL: OBC, data handling

Power:

GomSpace EPS with battery board P31us (4x2600 mAh)

~ 6 W generated with deployable panels

PICSAT IN A NUTSHELL: OBC, data handling

Power:

GomSpace EPS with battery board P31us (4x2600 mAh)

~ 6 W generated with deployable panels

Communications:

ISIS TRXVU VHF/UHF Transceiver
ISIS AntS Deployable Antenna System
(1 Mbyte/day downlink; 0.1 Mbyte/day uplink)

PICSAT IN A NUTSHELL: OBC, data handling

Power:

GomSpace EPS with battery board P31us (4x2600 mAh)

~ 6 W generated with deployable panels

<u>Communications:</u>

ISIS TRXVU VHF/UHF Transceiver
ISIS AntS Deployable Antenna System
(1 Mbyte/day downlink; 0.1 Mbyte/day uplink)

On-board computer:

ISIS OBC - 400 MHz ARM9 processor (will be used for some in-flight data processing)

PICSAT IN A NUTSHELL: Noise budget

Source	Assumption	Error level	Resulting error (ppm/h)
Photon noise	N=80x10 ⁴ e/s	\sqrt{N}	60
Readout noise	0	0	0
Dark current	N=10 ³ e/s	\sqrt{N}	0.1
Sky background	N=150 e/s	N	0.2
Thermal stability	0.01 K	0.4 % per K	40
Voltage stability	100 uV	20 % per Volt	20
Pointing stability	100 Hz	5 %	83

TOTAL: 111 ppm/h

CONCLUSION: current status

- For its objective, PicSat must be launched in Q2 2017
- Engineering model is currently being built in Meudon (structure, ADCS, OBC already delivered)
- Payload telescope has been designed and is now being built
- A first version of the electronic board has been tested in vibrations, thermal vacuum (radiation testing to come), and the second version will be delivered in July
- Payload algorithm and data reduction/processing are being developed (will be tested on a dedicated testbench this summer)
- Flight software also under development