

1^{er} Workshop Cubesat Étudiants National, 09-10/06/2016, Paris, France

NanoMagSat a forerunner nanosatellite for geomagnetic and ionospheric observations

Gauthier Hulot, Elvira Astafyeva, Pierdavide Coïsson Vincent Lesur, Pierre Vigneron

Institut de Physique du Globe de Paris

Jean-Michel Léger, Thomas Jager CEA-Léti, MINATEC, Grenoble

1^{er} Workshop Cubesat Étudiants National, 09-10/06/2016, Paris, France

Goals of the NanoMagSat project

- To design and build a forerunner nanosatellite for geomagnetic and ionospheric observations, by taking advantage of lessons learned from the ongoing ESA Swarm mission
- Short/medium-term : to enhance the science return of the Swarm mission
- Long-term : to open the way to collaborative space geomagnetic and ionospheric observations, by extending the International Network of Geomagnetic Observatories "Intermagnet" to space

The Earth's magnetic Field has a great variety of sources

- The main source is the geodynamo within the core
- This main source is responsible for the magnetization of rocks with the Earth's crust, itself a source of secondary magnetic fields
- But electrical currents also flow within the ionosphere, the magnetosphere and even the oceans

Challenges of magnetic observations

Deciphering the signal from each source requires very accurate magnetic observations at different local times

Local time separation of Swarm satellites

End of April 2014

3 hrs: April 2016

6 hrs: April 2018

 It will take almost another three years to reach 6 hrs local time separation, and only four different local times would then be sampled.

Time needed to cover all local times

- It currently takes roughly four months for the Swarm constellation to cover all local times.
- This will decrease to two months when full separation of Alpha/Charlie with respect to Bravo will be reached (April 2018)
- This is very nice, but could still be improved

A satellite on an orbit at (say) 60° inclination would provide the missing local times fast

LT jour nº1

One day of local time and geographic coverage

A satellite on an orbit at (say) 60° inclination would provide the missing local times fast

Geographic coverage after 36 days (1 point every 100 s)

A satellite on an orbit at (say) 60° inclination would provide the missing local times fast as well as crossing orbits (tie points)

Combined Days 1, 9, 18 and 27 of local time and geographic coverage

Benefits such a satellite would bring for investigation of the magnetic field sources

- Higher temporal resolution for ionospheric Sq field models (down to one month)
- Improved reconstruction of fast changes (sub-annual) of the core field
- The lithospheric field could also be improved, also thanks to the 60° crossing of the orbits (providing tie points)

But also:

- Improved understanding of local ionospheric currents
- Improved spatial description of the magnetospheric field
- Improved input for investigations of the electrical conductivity of the Deep Earth, and tidal signals

Current payload on the Swarm satellites

Absolute Scalar Magnetometer (CEA/LETI, CNES), 1Hz (scalar + vector) OR 250 Hz scalar Vector Field Magnetometer and Star Tracker (DTU Space), 50Hz, 1Hz Accelerometer (VZLU, CZ), 1Hz Electric Field Inst. (Charge particle imager, UC; Langmuir Probe, Uppsala), 2Hz GPSR (Ruag), 1 Hz

The Swarm ASM instrument can be used as a stand-alone dual purpose magnetometer

• It can provide independent absolute scalar (σ = 65 pT) and vector data (with self-calibration procedure, σ = 1.6 - 1.9 nT) at 1 Hz

-> these "vector mode" data have been used to compute very valuable global field models, despite the remoteness of the star cameras away on the boom (Hulot et al., GRL, 2015; Vigneron et al., 2015)

 It can also provide high frequency absolute scalar data (resolution close to 1pT/√Hz) at 250 Hz

-> these "Burst mode" data testify for interesting small scale features in plasma bubbles, and can detect "whistler" types of signals

Example of low frequency "whistler" type of signals detected with the ASM burst mode

NanoMagSat

Progress on the ASM instrument

 The instrument is currently being miniaturized (Rutkowski et al., Sensors Actuators, 2014)

- Issues identified on Swarm (see Léger et al., EPS, 2015; Fratter et al. AA, 2016) are currently being solved
- The instrument could be run in a permanent dual mode so as to simultaneously provide 1Hz scalar + vector data AND 250 Hz scalar data.

The NanoMagSat project

- 12U Cubesat (20cmx20cmx30cm) with a 2m boom for the magnetometry payload
- Miniaturised ASM magnetometer in dual vector/burst mode, with two star cameras.
- Possibility of miniaturized VFM or search coils to also measure high frequency vector field fluctuations (up to 500 Hz ?)
- Langmuir Probes (Te, Ne)
- Dual frequency GPS (TEC)
- Little attitude control: gravitationally stabilized (requirement: spin < 40°/mn swing < 30°/mn to keep bias below 0.2nT)
- No propulsion

Aiming at a launch before 2021

- Swarm's constellation is complete up to 2022, at least
- Higher Bravo satellite could stay even longer in orbit, likely well beyond 2024

Next steps

- Complete the NanoMagSat Phase 0 study within CNES (June 2016)
- Run a set of complete end-to-end simulations with the help of the Swarm science community
- Present the mission to the next level within CNES (Fall 2016 ?)
- Improve Swarm by taking advantage of a low-cost nanosatellite
- Move towards an "InterMagSat" network of orbiting magnetic observatories (space extension of the "Intermagnet" network of ground magnetic observatories)

IONOGLOW: Ionosperic Dynamic & Tsunami Airglow Detector Giovanni Occhipinti, Elvira Astafveva, Philippe Lognonné, et al. PGP TITUT DE PHYSIQUE cnes

Meteors

Ionospheric Dynamics (e.g., Plasma Bubbles)

[Occhipinti et al., EPS, 2011; Makela et al., GRL 2011]

]

Tsunamigenic Tohoku Earthquake, 11th Mars, 2011 (Mw=9.3)

[Occhipinti et al., EPS, 2011]

Tsunamigenic Tohoku Earthquake, 11th Mars, 2011 (Mw=9.3)

[Occhipinti et al., EPS, 2011]

Queen Charlotte tsunami M_w 7.7 27 October 2013

.....

145°W 162°W 159°W 156°W 153°W 150°W 165°W 162"W 169"W 156°W 153°W 150 165°W 162thW 159thW 153°W 150" 165°W 162thW 153°W 150 145°W 162thW 159⁵W 156°W 153°W 150* 165°W 142⁸W 159thW 153°W 156°W 159"W 188°W 156°W

Chile tsunami M_w 8.2 16 September 2015

>> Tohoku signal was ± 15 Rayleigh <<</p>

2011 / 2012 / 2013 / 2014 / 2015 / 2016 / 2017 ... 2020

2011 / 2012 / 2013 / 2014 / 2015 / 2016 / 2017 ... 2020